
Data Structures

59

 UNIT-2

Stack & Queue

Data Structures

60

13. Stack

A stack is an Abstract Data Type (ADT), commonly used in most programming
languages. It is named stack as it behaves like a real-world stack, for example – a deck

of cards or a pile of plates, etc.

A real-world stack allows operations at one end only. For example, we can place or
remove a card or plate from the top of the stack only. Likewise, Stack ADT allows all

data operations at one end only. At any given time, we can only access the top element
of a stack.

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the
element which is placed (inserted or added) last, is accessed first. In stack terminology,

insertion operation is called PUSH operation and removal operation is called POP
operation.

Stack Representation

The following diagram depicts a stack and its operations −

A stack can be implemented by means of Array, Structure, Pointer, and Linked List. Stack can

either be a fixed size one or it may have a sense of dynamic resizing. Here, we are going to

implement stack using arrays, which makes it a fixed size stack implementation.

Data Structures

61

Basic Operations

Stack operations may involve initializing the stack, using it and then de-initializing it.
Apart from these basic stuffs, a stack is used for the following two primary operations −

 push() − Pushing (storing) an element on the stack.

 pop() − Removing (accessing) an element from the stack.

When data is PUSHed onto stack.

To use a stack efficiently, we need to check the status of stack as well. For the same
purpose, the following functionality is added to stacks −

 peek() − get the top data element of the stack, without removing it.

 isFull() − check if stack is full.

 isEmpty() − check if stack is empty.

At all times, we maintain a pointer to the last PUSHed data on the stack. As this pointer
always represents the top of the stack, hence named top. The top pointer provides top

value of the stack without actually removing it.

First we should learn about procedures to support stack functions −

peek()

Algorithm of peek() function −

begin procedure peek

return stack[top]

end procedure

Implementation of peek() function in C programming language −

int peek() {

return stack[top];

}

Data Structures

62

isfull()

Algorithm of isfull() function −

begin procedure isfull

if top equals to MAXSIZE

return true

else

return

false endif

end procedure

Implementation of isfull() function in C programming language −

bool isfull() {

if(top == MAXSIZE)

return true;

else

return false;

}

isempty()

Algorithm of isempty() function −

begin procedure isempty

if top less than 1

return true

else

return

false endif

end procedure

Data Structures

63

Implementation of isempty() function in C programming language is slightly different.
We initialize top at -1, as the index in array starts from 0. So we check if the top is
below zero or -1 to determine if the stack is empty. Here's the code −

bool isempty() {

if(top == -1)

return true;

else

return false;

}

Push Operation

The process of putting a new data element onto stack is known as a Push Operation.
Push operation involves a series of steps −

 Step 1 − Checks if the stack is full.

 Step 2 − If the stack is full, produces an error and exit.

 Step 3 − If the stack is not full, increments top to point next empty space.

 Step 4 − Adds data element to the stack location, where top is pointing.

 Step 5 − Returns success.

Data Structures

64

If the linked list is used to implement the stack, then in step 3, we need to allocate
space dynamically.

Algorithm for PUSH Operation

A simple algorithm for Push operation can be derived as follows −

begin procedure push: stack, data

if stack is full

return null

endif

top ← top + 1

stack[top] ← data

end procedure

Implementation of this algorithm in C, is very easy. See the following code −

void push(int data) {

if(!isFull()) {

top = top + 1;

stack[top] = data;

}else {

printf("Could not insert data, Stack is full.\n");

}

}

Pop Operation

Accessing the content while removing it from the stack, is known as a Pop Operation. In

an array implementation of pop() operation, the data element is not actually removed,

instead top is decremented to a lower position in the stack to point to the next value.
But in linked-list implementation, pop() actually removes data element and deallocates

memory space.

A Pop operation may involve the following steps −

 Step 1 − Checks if the stack is empty.

 Step 2 − If the stack is empty, produces an error and exit.

Data Structures

65

 Step 3 − If the stack is not empty, accesses the data element at which top is
pointing.

 Step 4 − Decreases the value of top by 1.

 Step 5 − Returns success.

Algorithm for Pop Operation

A simple algorithm for Pop operation can be derived as follows −

begin procedure pop: stack

if stack is empty

return null

endif

data ← stack[top]

top ← top - 1

return data

end procedure

Data Structures

66

Implementation of this algorithm in C, is as follows −

int pop(int data) {

if(!isempty()) {

data = stack[top];

top = top - 1;

return data;

}else {

printf("Could not retrieve data, Stack is empty.\n");

}

}

For a complete stack program in C programming language, please click here.

Stack Program in C

We shall see the stack implementation in C programming language here. You can try the
program by clicking on the Try-it button. To learn the theory aspect of stacks, click on

visit previous page.

Implementation in C

#include <stdio.h>

int MAXSIZE = 8;

int stack[8];

int top = -1;

int isempty() {

if(top == -1)

return 1;

else

return 0;

}

http://www.tutorialspoint.com/data_structures_algorithms/stack_program_in_c.htm

Data Structures

67

int isfull() {

if(top == MAXSIZE)

return 1;

else

return 0;

}

int peek() {

return stack[top];

}

int pop() {

int data;

if(!isempty()) {

data = stack[top];

top = top - 1;

return data;

}else {

printf("Could not retrieve data, Stack is empty.\n");

}

}

int push(int data) {

if(!isfull()) {

top = top + 1;

stack[top] =

data; }else {

printf("Could not insert data, Stack is full.\n");

}

}

Data Structures

68

int main() {

// push items on to the

stack push(3);

push(5);

push(9);

push(1);

push(12);

push(15);

printf("Element at top of the stack: %d\n" ,peek());

printf("Elements: \n");

// print stack data

while(!isempty()) {

int data = pop();

printf("%d\n",data);

}

printf("Stack full: %s\n" , isfull()?"true":"false");

printf("Stack empty: %s\n" , isempty()?"true":"false");

return 0;

}

If we compile and run the above program, it will produce the following result −

Element at top of the stack: 15

Elements:

15

12

1

9

5

3

Stack full: false

Stack empty: true

Data Structures

69

15. Queue

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a queue
is open at both its ends. One end is always used to insert data (enqueue) and the other
is used to remove data (dequeue). Queue follows First-In-First-Out methodology, i.e.,

the data item stored first will be accessed first.

A real-world example of queue can be a single-lane one-way road, where the vehicle
enters first, exits first. More real-world examples can be seen as queues at the ticket

windows and bus-stops.

Queue Representation

As we now understand that in queue, we access both ends for different reasons. The

following diagram given below tries to explain queue representation as data structure −

As in stacks, a queue can also be implemented using Arrays, Linked-lists, Pointers and
Structures. For the sake of simplicity, we shall implement queues using one-dimensional

array.

Basic Operations

Queue operations may involve initializing or defining the queue, utilizing it, and then
completely erasing it from the memory. Here we shall try to understand the basic

operations associated with queues −

 enqueue() − add (store) an item to the queue.

 dequeue() − remove (access) an item from the queue.

Data Structures

70

Few more functions are required to make the above-mentioned queue operation efficient.
These are −

 peek() − Gets the element at the front of the queue without removing it.

 isfull() − Checks if the queue is full.

 isempty() − Checks if the queue is empty.

In queue, we always dequeue (or access) data, pointed by front pointer and while
enqueing (or storing) data in the queue we take help of rear pointer.

Let's first learn about supportive functions of a queue −

peek()

This function helps to see the data at the front of the queue. The algorithm of peek()
function is as follows −

begin procedure peek

return queue[front]

end procedure

Implementation of peek() function in C programming language −

int peek() {

return queue[front];

}

isfull()

As we are using single dimension array to implement queue, we just check for the rear
pointer to reach at MAXSIZE to determine that the queue is full. In case we maintain the
queue in a circular linked-list, the algorithm will differ. Algorithm of isfull() function −

begin procedure isfull

if rear equals to MAXSIZE

return true

else

Data Structures

71

return false

endif

end procedure

Implementation of isfull() function in C programming language −

bool isfull() {

if(rear == MAXSIZE - 1)

return true;

else

return false;

}

isempty()

Algorithm of isempty() function −

begin procedure isempty

if front is less than MIN OR front is greater than rear

return true

else

return

false endif

end procedure

If the value of front is less than MIN or 0, it tells that the queue is not yet initialized,

hence empty.

Here's the C programming code −

bool isempty() {

if(front < 0 || front > rear)

return true;

else

return false;

}

Data Structures

72

Enqueue Operation

Queues maintain two data pointers, front and rear. Therefore, its operations are
comparatively difficult to implement than that of stacks.

The following steps should be taken to enqueue (insert) data into a queue −

 Step 1 − Check if the queue is full.

 Step 2 − If the queue is full, produce overflow error and exit.

 Step 3 − If the queue is not full, increment rear pointer to point the next empty
space.

 Step 4 − Add data element to the queue location, where the rear is pointing.

 Step 5 − Return success.

Sometimes, we also check to see if a queue is initialized or not, to handle any
unforeseen situations.

Data Structures

73

Algorithm for enqueue Operation

procedure enqueue(data)

if queue is full

return

overflow endif

rear ← rear + 1

queue[rear] ← data

return true

end procedure

Implementation of enqueue() in C programming language −

int enqueue(int data)

if(isfull())

return 0;

rear = rear + 1;

queue[rear] = data;

return 1;

end procedure

Dequeue Operation

Accessing data from the queue is a process of two tasks − access the data where front

is pointing and remove the data after access. The following steps are taken to perform
dequeue operation −

 Step 1 − Check if the queue is empty.

 Step 2 − If the queue is empty, produce underflow error and exit.

 Step 3 − If the queue is not empty, access the data where front is pointing.

 Step 4 − Increment front pointer to point to the next available data element.

 Step 5 − Return success.

Data Structures

74

Algorithm for dequeue Operation

procedure dequeue if

queue is empty

return

underflow end if

data = queue[front]

front ← front + 1

return true

end procedure

Implementation of dequeue() in C programming language −

int dequeue() {

if(isempty())

return 0;

int data = queue[front];

front = front + 1;

return data;

}

Data Structures

75

Queue Program in C

We shall see the stack implementation in C programming language here. You can try the

program by clicking on the Try-it button. To learn the theory aspect of stacks, click on

visit previous page.

Implementation in C

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <stdbool.h>

#define MAX 6

int intArray[MAX];

int front = 0;

int rear = -1;

int itemCount = 0;

int peek(){

return intArray[front];

}

bool isEmpty(){

return itemCount == 0;

}

bool isFull(){

return itemCount == MAX;

}

int size(){

return itemCount;

}

void insert(int data){

if(!isFull()){

Data Structures

76

if(rear == MAX-

1){ rear = -1;

}

intArray[++rear] = data;

itemCount++;

}

}

int removeData(){

int data = intArray[front++];

if(front == MAX){

front = 0;

}

itemCount--;

return data;

}

int main() {

/* insert 5 items */

insert(3);

insert(5);

insert(9);

insert(1);

insert(12);

// front : 0

// rear : 4

// ------------------

// index : 0 1 2 3 4

// ------------------

// queue : 3 5 9 1

12 insert(15);

// front : 0

// rear : 5

Data Structures

77

// ---------------------

// index : 0 1 2 3 4 5

// ---------------------

// queue : 3 5 9 1 12 15

if(isFull()){

printf("Queue is full!\n");

}

// remove one item

int num = removeData();

printf("Element removed: %d\n",num);

// front : 1

// rear : 5

// -------------------

// index : 1 2 3 4 5

// -------------------

// queue : 5 9 1 12 15

// insert more

items insert(16);

// front : 1

// rear : -1

// ----------------------

// index : 0 1 2 3 4 5 //

// queue : 16 5 9 1 12 15

// As queue is full, elements will not be

inserted. insert(17);

insert(18);

// ----------------------

// index : 0 1 2 3 4 5 //

Data Structures

78

// queue : 16 5 9 1 12 15 printf("Element

at front: %d\n",peek());

printf("----------------------

\n"); printf("index : 5 4 3 2 1

0\n"); printf("-------------------

---\n"); printf("Queue: ");

while(!isEmpty()){

int n = removeData();

printf("%d ",n);

}

}

If we compile and run the above program, it will produce the following result −

Queue is full!

Element removed: 3

Element at front: 5

index : 5 4 3 2 1 0

Queue: 5 9 1 12 15 16

Data Structures

79

 Hash Table

Hash Table is a data structure which stores data in an associative manner. In a
hash table, data is stored in an array format, where each data value has its own unique
index value. Access of data becomes very fast if we know the index of the desired data.

Thus, it becomes a data structure in which insertion and search operations are very fast
irrespective of the size of the data. Hash Table uses an array as a storage medium and

uses hash technique to generate an index where an element is to be inserted or is to be
located from.

Hashing

Hashing is a technique to convert a range of key values into a range of indexes of an
array. We're going to use modulo operator to get a range of key values. Consider an

example of hash table of size 20, and the following items are to be stored. Item are in
the (key,value) format.

 (1,20)

 (2,70)

 (42,80)

 (4,25)

 (12,44)

 (14,32)

 (17,11)

 (13,78)

 (37,98)

Data Structures

80

Sr. No. Key Hash Array Index

1 1 1 % 20 = 1 1

2 2 2 % 20 = 2 2

3 42 42 % 20 = 2 2

4 4 4 % 20 = 4 4

5 12 12 % 20 = 12 12

6 14 14 % 20 = 14 14

7 17 17 % 20 = 17 17

8 13 13 % 20 = 13 13

9 37 37 % 20 = 17 17

Linear Probing

As we can see, it may happen that the hashing technique is used to create an already used

index of the array. In such a case, we can search the next empty location in the array by

looking into the next cell until we find an empty cell. This technique is called linear probing.

 After Linear

Sr. No. Key Hash Array Index Probing,
 Array Index

1 1 1 % 20 = 1 1 1

2 2 2 % 20 = 2 2 2

3 42 42 % 20 = 2 2 3

4 4 4 % 20 = 4 4 4

5 12 12 % 20 = 12 12 12

6 14 14 % 20 = 14 14 14

Data Structures

81

7 17 17 % 20 = 17 17 17

8 13 13 % 20 = 13 13 13

9 37 37 % 20 = 17 17 18

Basic Operations

Following are the basic primary operations of a hash table.

 Search − Searches an element in a hash table.

 Insert − inserts an element in a hash table.

 Delete − Deletes an element from a hash table.

Data Item

Define a data item having some data and key, based on which the search is to be
conducted in a hash table.

struct DataItem {

int data;

int key;

};

Hash Method

Define a hashing method to compute the hash code of the key of the data item.

int hashCode(int key){

return key % SIZE;

}

Search Operation

Whenever an element is to be searched, compute the hash code of the key passed and
locate the element using that hash code as index in the array. Use linear probing to get

the element ahead if the element is not found at the computed hash code.

Data Structures

82

struct DataItem *search(int key){

//get the hash

int hashIndex = hashCode(key);

//move in array until an empty

while(hashArray[hashIndex] != NULL){

if(hashArray[hashIndex]->key == key)

return hashArray[hashIndex];

//go to next cell

++hashIndex;

//wrap around the table

hashIndex %= SIZE;

}

return NULL;

}

Insert Operation

Whenever an element is to be inserted, compute the hash code of the key passed and
locate the index using that hash code as an index in the array. Use linear probing for
empty location, if an element is found at the computed hash code.

void insert(int key,int data){

struct DataItem *item = (struct DataItem*) malloc(sizeof(struct

DataItem)); item->data = data;

item->key = key;

//get the hash

int hashIndex = hashCode(key);

//move in array until an empty or deleted cell while(hashArray[hashIndex]

!= NULL && hashArray[hashIndex]->key != -1){

//go to next cell

++hashIndex;

Data Structures

83

//wrap around the table

hashIndex %= SIZE;

}

hashArray[hashIndex] = item;

}

Delete Operation

Whenever an element is to be deleted, compute the hash code of the key passed and
locate the index using that hash code as an index in the array. Use linear probing to get
the element ahead if an element is not found at the computed hash code. When found,

store a dummy item there to keep the performance of the hash table intact.

struct DataItem* delete(struct DataItem* item){

int key = item->key;

//get the hash

int hashIndex = hashCode(key);

//move in array until an empty

while(hashArray[hashIndex] !=NULL){

if(hashArray[hashIndex]->key == key){

struct DataItem* temp = hashArray[hashIndex];

//assign a dummy item at deleted position

hashArray[hashIndex] = dummyItem;

return temp;

}

//go to next cell

++hashIndex;

//wrap around the table

hashIndex %= SIZE;

}

return NULL;

}

Data Structures

84

Hash Table Program in C

Hash Table is a data structure which stores data in an associative manner. In hash table,

the data is stored in an array format where each data value has its own unique index
value. Access of data becomes very fast, if we know the index of the desired data.

Implementation in C

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <stdbool.h>

#define SIZE 20

struct DataItem {

int data;

int key;

};

struct DataItem* hashArray[SIZE];

struct DataItem* dummyItem;

struct DataItem* item;

int hashCode(int key){

return key % SIZE;

}

struct DataItem *search(int key){

//get the hash

int hashIndex = hashCode(key);

//move in array until an empty

while(hashArray[hashIndex] != NULL){

if(hashArray[hashIndex]->key == key)

return hashArray[hashIndex];

Data Structures

85

//go to next cell

++hashIndex;

//wrap around the table

hashIndex %= SIZE;

}

return NULL;

}

void insert(int key,int data){

struct DataItem *item = (struct DataItem*) malloc(sizeof(struct

DataItem)); item->data = data;

item->key = key;

//get the hash

int hashIndex = hashCode(key);

//move in array until an empty or deleted cell while(hashArray[hashIndex]

!= NULL && hashArray[hashIndex]->key != -1){

//go to next cell

++hashIndex;

//wrap around the table

hashIndex %= SIZE;

}

hashArray[hashIndex] = item;

}

struct DataItem* delete(struct DataItem* item){

int key = item->key;

//get the hash

Data Structures

86

int hashIndex = hashCode(key);

//move in array until an empty

while(hashArray[hashIndex] != NULL){

if(hashArray[hashIndex]->key == key){

struct DataItem* temp = hashArray[hashIndex];

//assign a dummy item at deleted position

hashArray[hashIndex] = dummyItem;

return temp;

}

//go to next cell

++hashIndex;

//wrap around the table

hashIndex %= SIZE;

}

return NULL;

}

void display(){

int i = 0;

for(i = 0; i<SIZE; i++) {

if(hashArray[i] != NULL)

printf(" (%d,%d)",hashArray[i]->key,hashArray[i]->data);

else

printf(" ~~ ");

}

printf("\n");

}

Data Structures

87

int main(){

dummyItem = (struct DataItem*) malloc(sizeof(struct

DataItem)); dummyItem->data = -1;

dummyItem->key = -1;

insert(1, 20);

insert(2, 70);

insert(42, 80);

insert(4, 25);

insert(12, 44);

insert(14, 32);

insert(17, 11);

insert(13, 78);

insert(37, 97);

display();

item = search(37);

if(item != NULL){

printf("Element found: %d\n", item-

>data); }else {

printf("Element not found\n");

}

delete(item);

item = search(37);

if(item != NULL){

printf("Element found: %d\n", item-

>data); }else {

printf("Element not found\n");

}

}

Data Structures

88

If we compile and run the above program, it will produce the following result −

~~ (1,20) (2,70) (42,80) (4,25) ~~ ~~ ~~ ~~ ~~ ~~ ~~ (12,44)
(13,78) (14,32) ~~ ~~ (17,11) (37,97) ~~

Element found: 97

Element not found

